Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 120(3): 665-673, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31970519

RESUMEN

PURPOSE: Iron is an important component of the oxygen-binding proteins and may be critical to optimal athletic performance. Previous studies have suggested that the G allele of C/G rare variant (rs1799945), which causes H63D amino acid replacement, in the HFE is associated with elevated iron indexes and may give some advantage in endurance-oriented sports. The aim of the present study was to investigate the association between the HFE H63D polymorphism and elite endurance athlete status in Japanese and Russian populations, aerobic capacity and to perform a meta-analysis using current findings and three previous studies. METHODS: The study involved 315 international-level endurance athletes (255 Russian and 60 Japanese) and 809 healthy controls (405 Russian and 404 Japanese). Genotyping was performed using micro-array analysis or by PCR. VO2max in 46 male Russian endurance athletes was determined using gas analysis system. RESULTS: The frequency of the iron-increasing CG/GG genotypes was significantly higher in Russian (38.0 vs 24.9%; OR 1.85, P = 0.0003) and Japanese (13.3 vs 5.0%; OR 2.95, P = 0.011) endurance athletes compared to ethnically matched controls. The meta-analysis using five cohorts (two French, Japanese, Spanish, and Russian; 586 athletes and 1416 controls) showed significant prevalence of the CG/GG genotypes in endurance athletes compared to controls (OR 1.96, 95% CI 1.58-2.45; P = 1.7 × 10-9). Furthermore, the HFE G allele was associated with high V̇O2max in male athletes [CC: 61.8 (6.1), CG/GG: 66.3 (7.8) ml/min/kg; P = 0.036]. CONCLUSIONS: We have shown that the HFE H63D polymorphism is strongly associated with elite endurance athlete status, regardless ethnicities and aerobic capacity in Russian athletes.


Asunto(s)
Proteína de la Hemocromatosis/genética , Resistencia Física/genética , Atletas , Estudios de Casos y Controles , Humanos , Polimorfismo de Nucleótido Simple
2.
PLoS One ; 11(6): e0156316, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27253421

RESUMEN

Skeletal muscle strength and mass, major contributors to sprint/power athletic performance, are influenced by genetics. However, to date, only a handful of genetic variants have been associated with sprint/power performance. The ACVR1B A allele (rs rs2854464) has previously been associated with increased muscle-strength in non-athletic cohort. However, no follow-up and/or replications studies have since been conducted. Therefore, the aim of the present study was to compare the genotype distribution of ACVR1B rs2854464 between endurance athletes (E), sprint/power (S/P) athletes, mixed athletes (M), and non-athletic control participants in 1672 athletes (endurance athletes, n = 482; sprint/power athletes, n = 578; mixed athletes, n = 498) and 1089 controls (C) of both European Caucasians (Italian, Polish and Russians) and Brazilians. We have also compared the genotype distribution according to the athlete's level of competition (elite vs. sub-elite). DNA extraction and genotyping were performed using various methods. Fisher's exact test (adjusted for multiple comparisons) was used to test whether the genotype distribution of rs2854464 (AA, AG and GG) differs between groups. The A allele was overrepresented in S/P athletes compared with C in the Caucasian sample (adjusted p = 0.048), whereas there were no differences in genotype distribution between E athletes and C, in neither the Brazilian nor the Caucasian samples (adjusted p > 0.05). When comparing all Caucasian athletes regardless of their sporting discipline to C, we found that the A allele was overrepresented in athletes compared to C (adjusted p = 0.024). This association was even more pronounced when only elite-level athletes were considered (adjusted p = 0.00017). In conclusion, in a relatively large cohort of athletes from Europe and South America we have shown that the ACVR1B rs2854464 A allele is associated with sprint/power performance in Caucasians but not in Brazilian athletes. This reinforces the notion that phenotype-genotype associations may be ethnicity-dependent.


Asunto(s)
Receptores de Activinas Tipo I/genética , Rendimiento Atlético , Estudios de Asociación Genética , Fuerza Muscular/genética , Resistencia Física/genética , Atletas , Brasil , Femenino , Frecuencia de los Genes , Humanos , Masculino , Polonia , Polimorfismo de Nucleótido Simple , Federación de Rusia , América del Sur , Población Blanca
3.
BMC Genomics ; 16: 25, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25612568

RESUMEN

BACKGROUND: Genetic variants may predispose humans to elevated risk of common metabolic morbidities such as obesity and Type 2 Diabetes (T2D). Some of these variants have also been shown to influence elite athletic performance and the response to exercise training. We compared the genotype distribution of five genetic Single Nucleotide Polymorphisms (SNPs) known to be associated with obesity and obesity co-morbidities (IGF2BP2 rs4402960, LPL rs320, LPL rs328, KCJN rs5219, and MTHFR rs1801133) between athletes (all male, n = 461; endurance athletes n = 254, sprint/power athletes n = 207), and controls (all male, n = 544) in Polish and Russian samples. We also examined the association between these SNPs and the athletes' competition level ('elite' and 'national' level). Genotypes were analysed by Single-Base Extension and Real-Time PCR. Multinomial logistic regression analyses were conducted to assess the association between genotypes and athletic status/competition level. RESULTS: IGF2BP2 rs4402960 and LPL rs320 were significantly associated with athletic status; sprint/power athletes were twice more likely to have the IGF2BP2 rs4402960 risk (T) allele compared to endurance athletes (OR = 2.11, 95% CI = 1.03-4.30, P <0.041), and non-athletic controls were significantly less likely to have the T allele compared to sprint/power athletes (OR = 0.62, 95% CI =0.43-0.89, P <0.0009). The control group was significantly more likely to have the LPL rs320 risk (G) allele compared to endurance athletes (OR = 1.26, 95% CI = 1.05-1.52, P <0.013). Hence, endurance athletes were the "protected" group being significantly (p < 0.05) less likely to have the risk allele compared to sprint/power athletes (IGF2BP2 rs4402960) and significantly (p < 0.05) less likely to have the risk allele compared to controls (LPL rs320). The other 3 SNPs did not show significant differences between the study groups. CONCLUSIONS: Male endurance athletes are less likely to have the metabolic risk alleles of IGF2BP2 rs4402960 and LPL rs320, compared to sprint/power athletes and controls, respectively. These results suggest that some SNPs across the human genome have a dual effect and may predispose endurance athletes to reduced risk of developing metabolic morbidities, whereas sprint/power athletes might be predisposed to elevated risk.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Obesidad/genética , Adulto , Alelos , Atletas , Diabetes Mellitus Tipo 2/patología , Frecuencia de los Genes , Genotipo , Humanos , Lipoproteína Lipasa/genética , Masculino , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Obesidad/patología , Oportunidad Relativa , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ARN/genética , Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...